AProof: Proof-First Personal Computing for Web4

Abstract

AProof is an architectural pattern and protocol stack for building proof-first digital systems. Instead of
relying on institutional trust, surveillance, or opaque algorithms, AProof requires that every state transition
in a system be accompanied by a cryptographic proof that the transition is lawful, ethically constrained, and
user-sovereign. Lawfulness here is defined not only in terms of syntactic validity (e.g., input formats,
signatures) but also with respect to higher-order invariants: ethical constraints, bounded drift, jurisdictional
rules, and user consent.

The core of AProof is the Meta Theorem of Prime Identity (MTPI), which models users, processes, and
systems as prime-indexed identities that can be composed and decomposed without hidden drift. On top of
MTPI, the AProof stack introduces Prime-Lawful Invariant Contracts (PLICs), a Conscious Sovereignty Layer
(CSL), and Archivum: a prime-indexed, proof-only audit layer. Together, these components enable a new
class of Web4 applications where the default behavior is silence, all actions must commute with ethical
constraints, and value is created through lawful participation rather than data extraction.

This whitepaper presents the problem AProof addresses, the conceptual underpinnings of MTPI and the
AProof stack, the execution and security model, and reference architectures for healthcare, banking, and Al
systems.

1. Introduction

1.1 From trust-based to proof-first systems

Most of our digital infrastructure—Web2 platforms, Web3 protocols, and contemporary Al systems—is still
fundamentally trust-based:

* Web2 concentrates data in platforms that users must trust to behave correctly, secure their data,
and enforce their own terms of service.

* Web3 introduced cryptographic settlement and transparency, but focuses primarily on financial
correctness (e.g., ownership, balances) rather than ethical or legal correctness.

* Al systems create and modify state—recommendations, risk scores, diagnoses—through processes
that are often non-deterministic, non-replayable, and hard to audit.

The result is a world of surveillance, opacity, and soft guarantees. Data is collected “just in case.”
Algorithms are updated without clear provenance. Users are modeled as accounts and profiles, not as
sovereign participants with enforceable rights.

AProof proposes a different foundation: no state transition should occur unless it is accompanied by a
verifiable proof that the transition respects a specified set of invariants. Instead of trusting institutions, we
trust proofs. Instead of collecting data, we collect lawful receipts.



1.2 Design goals

AProof is designed to support a transition to Web4: a layer of verifiable personal computing where systems
are:

1. Proof-first - every transition is guarded by cryptographic proofs evaluated against public rules.

2. Zero-surveillance by design - sensitive data never needs to be exposed on chain or in shared logs;
only commitments and proofs leave the client.

3. Ethically constrained - systems are bound by mathematically encoded ethical constraints and
bounded drift, not just by policy documents.

4. User-sovereign - participants maintain control over how their identities, capabilities, and proofs are
used. Consent is provable, scoped, and revocable.

5. Auditable - regulators, communities, and counterparties can verify that systems behave lawfully
without access to raw data.

These goals are realized through the MTPI framework and the AProof stack described in the following
sections.

2. Problem Statement

2.1 Surveillance and data extraction

Contemporary digital systems are optimized for aggregation and extraction:

* Service providers accumulate behavior logs, device fingerprints, and cross-context identifiers.
+ Data brokers monetize observed behavior in secondary markets.
« Even privacy-conscious infrastructures routinely store metadata that can be deanonymized.

In this environment, value is created by collecting and exploiting data, not by proving lawful
participation. The more a system observes, the more it can optimize or monetize—often at the expense of
the user.

AProof inverts this model. Instead of streaming data into the network, clients generate and share proofs
about their state and behavior. Proofs capture exactly what is necessary to authorize a transition—no more,
no less.

2.2 Limitations of Web2 and Web3
Web2 infrastructure is fundamentally centralized and policy-driven. While one can layer encryption and

access controls, enforcement ultimately depends on the operator and their incentives. Violations of policy
are detected, if at all, after the fact.

Web3 introduced globally verifiable ledgers and smart contracts. However, typical smart contracts:

+ Validate transactions in syntactic and financial terms (signatures, balances, nonces), not in ethical or
jurisdictional terms.



* Are open to sophisticated exploitation: MEV (maximal extractable value), toxic flow, and adversarial
reordering.
+ Have limited native concepts of consent, context, and drift.

As a result, blockchains can prove what happened, but not whether it was lawful or appropriate
relative to users, jurisdictions, or purpose.

2.3 Al drift and unverifiable decisions

Al systems exacerbate these issues:

* Models are updated in ways that are hard to attribute to specific data or decisions.

+ Outputs can drift over time, even without explicit updates, due to distribution shift and feedback
loops.

« Few systems provide replayable, verifiable traces that explain how a particular decision was reached.

Without a proof-based layer for AI behavior, we are forced to rely on informal assurances, audits, or
after-the-fact testing.

AProof responds by treating Al systems as stateful actors whose actions must commute with prime-lawful
constraints and produce audit-ready proofs about their own internal transitions.

3. Conceptual Overview of AProof

3.1 Core principles

AProof is built around a small set of principles that govern all system design:

1. Prime-indexed identity - Every governed entity (user, device, process, model, contract) is
represented as a prime-indexed identity derived from a genesis state. Identity is mathematical, not
institutional.

2. Lawful recursion - State transitions must preserve a set of invariants that encode not just technical
correctness but also ethical, legal, and jurisdictional constraints.

3. Silence by default - In the absence of a valid proof, the system stays silent. It does not guess,
speculate, or act on partial information.

4. Zero-surveillance auditability - All relevant behavior must be reconstructible from proofs and
commitments, without exposing raw personal data.

5. User-sovereign participation - Users grant capabilities through scoped, provable consent that can
be constrained over time, domain, and drift.

3.2 System model

At a high level, a AProof-compliant system consists of:

+ Clients that hold sensitive state, generate proofs, and enforce local policies.
« Circuits and verifiers that define lawful transitions for a given domain.



« Contracts and services that accept or reject transitions based solely on proofs and public
parameters.

 Archivum, an append-only, prime-indexed record of accepted transitions, storing proof hashes and
minimal metadata.

The network never needs direct access to the user's full state. Instead, it receives proofs that certain
properties hold and enforces that only transitions with valid proofs can change shared state.

4. MTPI and Prime Identity

4.1 Meta Theorem of Prime Identity (MTPI)

The Meta Theorem of Prime Identity is the formal backbone of AProof. At an intuitive level, MTPI states that:

Every lawful identity in the system can be represented as a composition of prime identities,
and this decomposition is stable under lawful recursion.

A prime identity is a minimal, indivisible unit of identity that cannot be expressed as a lawful composition
of other identities within the system’s rules. Composite identities—such as a user plus a device, or a model
plus a dataset—are expressed as products or sums of prime identities.

MTPI ensures that as systems evolve, their identities remain factored in a stable way. This enables us to:

* Track how complex entities (organizations, systems, models) evolve over time.
+ Reason about bounded drift: changes that preserve the prime factorization but alter coefficients.
+ Detect unlawful identity fusions or splits that attempt to circumvent constraints.

4.2 Prime-indexed state and identity

In AProof, every governed entity is anchored in a genesis state and a prime index:

* The genesis state encodes the initial conditions: e.g., a user’s enroliment seed, a device attestation,
or an initial model snapshot.
* The prime index ties that genesis to a unique slot within the system’s identity lattice.

A practical implementation might compute a Poseidon hash of the genesis state and a local salt, then map
that hash to a prime index within a large, sparse space. Crucially, this index is not derived from traditional
identifiers such as email, social security number, or wallet address.

4.3 Lawful recursion and drift

As identities evolve, they undergo recursive transitions: updates to attributes, capabilities, or
relationships. MTPI constrains these transitions via two main notions:

* Prime-lawful recursion - A transition is prime-lawful if it preserves the prime factorization of
identities and adheres to all applicable invariants.



« Drift - Drift measures the distance between an identity's current state and its genesis or prior lawful
checkpoints.

AProof introduces bounded drift parameters, such as a maximum allowed drift per time unit or per
transition. When drift exceeds a threshold, the system must either:

» Refuse further transitions until a re-certification or human review occurs, or
* Restrict capabilities and enter a “constrained mode.”

This makes it possible to quantitatively bound how far a system can move away from its original
mandate without explicit intervention.

5. The AProof Stack

5.1 Prime-Lawful Invariant Contracts (PLICs)

Prime-Lawful Invariant Contracts are smart contracts and off-chain verifiers that implement the MTPI
constraints for a specific domain. A PLIC:

+ Defines the set of allowed transitions in terms of inputs, outputs, and proof statements.
* Encodes ethical, legal, and jurisdictional rules as invariants that must hold for every transition.
* Exposes a minimal interface: typically | verifyAndApply(proof, publicInputs) .

Rather than checking if a transaction is syntactically correct or signed by the right key, a PLIC asks: “Is there
a valid proof that this transition satisfies all invariants?” If not, the transition is rejected.

PLICs can be composed: a healthcare PLIC might depend on a generic consent PLIC, which itself depends
on an identity PLIC. This composability mirrors the prime factorization of identities.

5.2 Conscious Sovereignty Layer (CSL)

The Conscious Sovereignty Layer is a governance and policy layer that sits above PLICs. CSL is responsible
for encoding:

« Ethical constraints, such as beneficence (do good), non-maleficence (do no harm), and respect for
autonomy.

* Sovereignty rules, such as which jurisdictions apply to a given identity or action.

+ Silence Clause semantics, specifying when systems must default to inaction.

CSL is not a vague policy document. It is represented as a set of operators and commutation rules that
must hold when composed with PLICs. A transition is admissible only if, when interpreted under CSL, it
commutes with the ethical and sovereignty operators.



5.3 Archivum (Ar)

Archivum is AProof’s audit substrate: an append-only store of prime-indexed transition records. Each record
typically contains:

+ A prime identity reference or composite identity handle.

+ Hashes of the relevant verification keys and proofs.

* Minimal public metadata (e.g., timestamp, policy class, drift metrics).

« A resonance or “participation weight” representing the contribution of the transition to system value.

Archivum does not store raw personal data. Instead, it serves as a ledger of lawful transitions. Regulators,
auditors, and counterparties can verify that:

* Transitions occurred.
* They were backed by valid proofs.
* They respected the relevant CSL policies.

This makes it possible to achieve regulator-grade auditability without surveillance.

5.4 Web4 substrate and DIN-secured RPC

AProof is substrate-agnostic: it can be implemented on top of Ethereum, L2s, or other verifiable execution
environments. To secure the connectivity between clients and these substrates, AProof can integrate with
DIN-secured RPC:

* Nodes are economically staked and monitored for honesty and availability.
* RPC behavior can itself be subjected to MTPI-style constraints and proofs.

This reduces the attack surface of man-in-the-middle and censorship attacks and ensures that
infrastructure providers are part of the lawful-by-design envelope.

6. Execution Model

6.1 Client-side proving

In AProof, the client is the primary locus of computation and privacy. A typical transition proceeds as
follows:

1. The client evaluates a prospective action: e.g., “share a subset of my medical record with this
provider,” or “initiate a payment under this policy.”

2. The client constructs a witness, combining local state (e.g., encrypted records, keys, consent
artifacts) with public parameters.

3. A zero-knowledge circuit is executed locally (in browser, mobile app, or trusted runtime) to generate
a proof.

4. The proof and minimal public inputs are sent to a verifier contract or service.



At no point does the raw sensitive state leave the client. The network sees only the proof that “there exists
a local state satisfying these conditions.”

6.2 Lawful gates

Verifier contracts and services act as lawful gates. A gate receives:

* A proof.
* Public inputs (e.g., commitment roots, policy identifiers, nonces).
+ Optional contextual parameters (e.g., jurisdiction tags, time windows).

It then performs two categories of checks:

1. Cryptographic validity - the proof is valid with respect to the circuit and verification key.
2. Lawfulness - the public inputs and contextual parameters satisfy the relevant CSL and PLIC
constraints.

Only if both categories pass does the gate authorize a state transition.

6.3 Silence-by-default and failure modes

If any component of the validation fails, AProof systems are required to remain silent or revert to a
previously lawful state. Common failure modes include:

* Invalid or expired proofs.
« Drift exceeding allowed thresholds.
* Conflicts with updated CSL policies (e.g., sanctions, new regulatory requirements).

Silence-by-default ensures that the absence of a proof cannot be exploited to coerce action. It also
provides a safety margin for Al systems: in ambiguous situations, the default is to ask for clarification or
escalate to a human, not to act.

7. Security and Guarantees

7.1 Zero-surveillance privacy

AProof’s primary privacy guarantee is that no raw personal or sensitive data needs to leave the client.
Protections include:

+ Use of commitments and Merkle roots to represent datasets (health records, transaction histories)
instead of the datasets themselves.

* ZK proofs that assert properties of the datasets (e.g., “age = 18,” “KYC checks passed,” “this record
contains a diagnosis code in this class”) without revealing underlying fields.

« Strict logging discipline: only proof hashes, verification key references, and minimal metadata enter
Archivum.



This design materially reduces the risk and impact of data breaches, reidentification attacks, and
cross-context tracking.

7.2 Bounded drift

Bounded drift is a central guarantee for systems that learn or adapt over time. AProof enforces drift bounds
by:

+ Recording checkpoints: states at which the system'’s behavior and parameters are certified.
+ Defining formal drift metrics between checkpoints and current behavior.
* Requiring proofs that the current drift lies below specified thresholds.

If a system cannot generate such a proof, it loses the right to execute certain transitions. In Al contexts, this
can prevent models from drifting into unsafe regions without explicit recertification.

7.3 Auditability and non-repudiation

Through Archivum, AProof provides a detailed, privacy-preserving audit trail:

* Every accepted transition has an associated proof hash, verification key hash, and timestamp.

* Regulatory or community auditors can replay proof verification off-chain and verify high-level policy
compliance.

* Participants cannot plausibly deny that a transition occurred once it is anchored in Archivum.

This yields non-repudiation of lawful behavior, rather than non-repudiation of raw actions. A party can
credibly claim, “All of our actions were accompanied by lawful proofs,” and prove it.

7.4 Resistance to MEV and exploitation

By design, AProof systems:

+ Minimize the information exposed on chain about user state and intent.

* Force all transitions through invariant contracts that cannot be side-stepped.

+ Reduce exploitable surface area for MEV, because many strategies depend on observing detailed
user intent or unshielded state.

While AProof does not eliminate all forms of economic exploitation, it constrains the information and
control available to adversaries in a principled way.

8. Reference Architectures

8.1 Healthcare protocols

In healthcare, AProof enables zero-surveillance clinical workflows while maintaining regulatory-grade
auditability.



Key components include:

* Consent PLICs - Patients generate consent proofs that specify which providers can access which
slices of their records, under what conditions, and for how long. Providers verify these proofs before
initiating data access.

 Record pointers - Health records remain in existing EHR systems. AProof operates over encrypted
pointers and commitments to FHIR bundles or equivalent structures.

+ Device attestations - Medical devices, wearables, and hospital systems act as prime identities. Their
measurements and events are wrapped in proofs that they were produced under certified firmware
and within validity periods.

Outcomes:

* Providers and auditors can verify that every access to a health record was backed by valid consent
and policy proofs.

* PHI never needs to be stored on chain or in third-party logs.

+ Patients retain visibility and control over how their data is used, with the option to revoke consent
and invalidate future proofs.

8.2 Banking and payments

In financial systems, AProof supports ZK-lawful finance: compliant, auditable banking and payments under
strict privacy guarantees.

Example flows:

* ZK-KYC onboarding - Customers prove that they have passed KYC with an institution-specific or
shared authority, without revealing underlying documents. The bank stores a commitment and
proof, not the raw KYC corpus on the shared substrate.

+ Scoped spending - Every payment is accompanied by a SpendProof encoding: customer identity
class, jurisdiction, risk checks, transaction limits, and merchant categories. The payment processor
verifies the SpendProof before routing funds.

* Regulatory reporting - Regulators audit aggregated proofs showing that all transactions above
thresholds satisfied relevant checks, without receiving per-user transaction histories.

Outcomes:

+ Banks reduce both privacy risk and data retention burdens.
* Regulators gain confidence in systemic compliance.
« Users can participate in financial systems without surrendering unnecessary personal detail.

8.3 Al and research: Q-RAGI and the Q-Calculator

Al and research systems are natural candidates for AProof, given their complexity and impact.



Two reference components are:

* Q-Calculator - A quantum-inspired computational substrate that models recursion and convergence
under CSL constraints. Each computation step is treated as a state transition subject to prime-lawful
gating.

* Q-RAGI - A retrieval-augmented reasoning architecture with a contractive affine core. Each
reasoning step must produce proofs that it remains within a bounded region of behavior, defined by
training data, policies, and drift limits.

Outcomes:

* Researchers can build systems whose reasoning paths are verifiable and auditable.
* High-risk decisions (e.g., medical recommendations, legal suggestions) can be tied to proofs that
they were generated under controlled conditions.

9. Governance and the =-Constitution

9.1 Invariants

The =-Constitution is the foundational governance framework for AProof. It specifies the invariants that all
AProof-compliant systems must respect. Core invariants include:

1. Prime-indexability - Every governed artifact must be representable as a prime-indexed identity or
composition thereof.

2. Recursive decodability - Outcomes must be reconstructible from recorded inputs, proofs, and
public parameters. If a system cannot explain its behavior in these terms, it is considered

non-compliant.
3. Identity persistence - Ethical and jurisdictional constraints are bound to identities over time.
Attempts to evade constraints by identity hopping or splitting are prohibited by the MTPI structure.

9.2 Upgrades and amendments

The =-Constitution is not static; it must evolve as technology, law, and ethics evolve. AProof proposes:

+ Layered governance - Core invariants are extremely conservative and rarely changed.
Domain-specific invariants (e.g., for healthcare, finance) can be updated more frequently.

* Proof-backed amendments - Proposed changes must be accompanied by proofs (or at least formal
arguments) that they do not violate core invariants.

« Community and institutional participation - Stakeholders, including users, institutions, and
regulators, participate in constitutional deliberation.

This ensures that AProof remains both stable and adaptable, capable of responding to new challenges
without sacrificing its core guarantees.
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10. Implementation Roadmap

10.1 Current components

A practical AProof implementation typically includes:

« A set of Circom (or equivalent) circuits for core identity, consent, and domain-specific proofs.

« Verifier contracts deployed on one or more chains.

+ A Proof Manager layer in TypeScript or another systems language to orchestrate witness
construction and proof generation on the client.

* An Archivum deployment for storing proof and policy metadata.

* Optional integration with DIN-secured RPC or similar infrastructure for hardened connectivity.

10.2 Near-term work

Near-term priorities include:

* Finalizing reference implementations for healthcare, banking, and Al
* Building SDKs and templates for developers to define their own PLICs and CSL extensions.
+ Establishing interoperability patterns between AProof deployments on different substrates.

10.3 Long-term research directions

Longer-term directions include:

+ Formalizing and mechanizing proofs of MTPI and its implications for complex identity graphs.

* Extending drift metrics and resonance measures for Al systems.

+ Exploring quantum-resistant and post-quantum-capable proof systems for AProof.

+ Developing human-readable representations of CSL policies and proofs to improve transparency.

11. Related Work

AProof builds on and complements multiple strands of existing work:

+ Zero-knowledge proofs - zk-SNARKSs, zk-STARKs, and related systems for privacy-preserving
verification.

* Privacy-enhancing technologies - secure multi-party computation, homomorphic encryption, and
differential privacy.

* Verifiable computing and Web3 - smart contracts, rollups, and verifiable execution environments.

* Al safety and alignment - approaches for constraining and auditing Al behavior.

AProof’s distinctive contribution is in combining these ingredients with a prime-indexed identity model
and explicit ethical invariants, providing an integrated, lawful-by-design framework.
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12. Conclusion

AProof proposes a shift from trust-based to proof-first digital systems, grounded in the Meta Theorem of
Prime Identity and a stack of prime-lawful contracts, sovereignty layers, and audit substrates. By requiring
that every state transition be accompanied by a proof of lawfulness—technical, ethical, and jurisdictional—
AProof enables systems that are simultaneously powerful, privacy-preserving, and accountable.

In a world of increasing algorithmic complexity and pervasive surveillance, AProof sketches a path toward
verifiable personal computing: a Web4 in which users, institutions, and Al systems interact under a
shared, provable constitution of behavior.

Glossary

 A\Proof - A proof-first architecture and protocol stack for building lawful, privacy-preserving systems.

* MTPI (Meta Theorem of Prime Identity) - A framework that models identities as prime-indexed
entities, enabling stable composition and bounded drift.

* Prime identity - An indivisible unit of identity within MTPI, used to factor more complex entities.

* PLIC (Prime-Lawful Invariant Contract) - A smart contract or verifier that enforces MTPI
constraints and CSL policies for a given domain.

+ CSL (Conscious Sovereignty Layer) - The layer that encodes ethical and sovereignty constraints and
enforces silence-by-default behavior.

* Archivum (Ar) - The prime-indexed audit substrate where proof hashes and minimal metadata
about lawful transitions are stored.

* Web4 - A proposed next stage of the web focused on verifiable personal computing, zero
surveillance, and proof-first systems.

« Drift - A measure of how far an identity or system has moved from its certified checkpoints.

* Resonance - A measure of how much a lawful transition contributes to systemic value or alignment
with goals.

* Zero-surveillance - A property of systems that do not require raw personal or sensitive data to leave
the client in order to function.
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